

Mark Scheme

Summer 2023

Pearson Edexcel GCE Advanced Subsiduary Level Further Mathematics (8FM0) Paper 01 Core Pure Mathematics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Publications Code 8FM0_01_2306_MS* All the material in this publication is copyright © Pearson Education Ltd 2023

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 80.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AOs	
1	y = 3	B1	2.2a	
	$z = \frac{\text{their } y}{3} = \dots\{1\}$	B1ft	1.1b	
	Uses $z - 3y = k \Rightarrow k = -8$ and			
	$x-3z = k \Rightarrow x = k+3z = $ their $k+3 \times$ their z			
	leading to a value for x	M1	3.1a	
	Alternatively			
	uses $x-3z = k = z-3y$ with values for y and z to find a value for x.			
	x = -5	A1	1.1b	
		(4)		
(4 marks)				
Notes:				
B1: $y = 3$				
B1ft: Follow through on the value of z which comes from their y divided by 3				
M1: A complete method to find the value of x. Uses $z - 3y = k$ to find a value for k then finds a value for x				
using $x - 3z = k$ and their values for z and k. Condone a slip with the coefficients if the intention is clear but must have the correct letters.				

Alternatively uses x - 3z = k = z - 3y with values for y and z to find a value for x.

A1: x = -5

Correct answers only scores full marks.

Question	Scheme	Marks	AOs
2(a)	$z^* = -3 - 4i$ (z-(-3+4i))(z-(-3-4i)) = z ² + pz + q {f(z) =}(z ² + pz + q)(z+r)	M1	3.1a
	$\left(z^2+6z+25\right)\left(z+7\right)$	A1	1.1b
	Multiplies out $(z^2 + 6z + 25)(z + 7) =\alpha z^2 + \beta z$	M1	1.1b
	$z^3 + 13z^2 + 67z + 175$ or $a = 13, b = 67$	A1	1.1b
		(4)	
	$\frac{\text{Alternative 1}}{z^* = -3 - 4i \text{ and uses product of roots} = -175 \text{ to find the third root}}$	M1	3.1a
	Third root = -7	A1	1.1b
	Either Uses sum roots = $-a$ to find a value for a or uses pair sum = b to find a value for b Or (z-(-3+4i))(z-(-3-4i))(z-their third root) =	M1	1.1b
	a = 13, b = 67	A1	1.1b
		(4)	
	$\frac{\text{Alternative 2}}{(-3+4i)^3 + a(-3+4i)^2 + b(-3+4i) + 175 = 0}$ $\Rightarrow 117 + 44i + a(-7-24i) + b(-3+4i) + 175 = 0$ Equates real and imaginary to form two linear simultaneous equations	M1	3.1a
	$117 - 7a - 3b + 175 = 0 \Rightarrow -7a - 3b = -292$ $44 - 24a + 4b = 0 \Rightarrow -24a + 4b = -44$	A1	1.1b
	Solves simultaneously to find values for <i>a</i> or <i>b</i>	M1	1.1b
	a = 13, b = 67	A1	1.1b
		(4)	
(b)	$ \begin{array}{c c} x & 4 \\ \hline & & -3 + 4i, -3 - 4i \\ \hline & & -7 \\ \hline & & x & -4 \end{array} $	B1 B1	1.1b 2.2a
		(2)	

(c)	-5+4i, -5-4i, -9	B1ft	2.2a		
		(1)			
	(7 marks)				
Notes:					
(a) M1: Uses the to write $f(z)$ A1: Correct	e given root and its complex conjugate to form a quadratic equation. Uses the qu) in the form $(z^2 + pz + q)(z + r)$ where p, q and r are real values expression for $f(z) = (z^2 + 6z + 25)(z + 7)$	adratic eq	uation		
M1: Multipl A1: Correct	ies out and simplifies to find the z^2 or z term. values for a and b or cubic				
Alternative M1: Uses the A1: Correct M1: A comp brackets (z-	1 e complex conjugate and product of roots = -175 to find the third root. third root elete method to find the values of <i>a</i> or <i>b</i> . Either uses the sum and pairs sum or m $-(-3+4i))(z-(-3-4i))(z-their third root)$ to find the z^2 or <i>z</i> term.	ultiplies ou	it three		
Altornativo	values for a and b or cubic				
M1: Substitu simultaneous A1: Correct,	ttes $-3+4i$ or $-3-4i$ into $f(z)$, sets the real and imaginary parts = 0 to form s equations in <i>a</i> and <i>b</i> . unsimplified equations.	two			
M1: Solves s f(-3-4i) = need to check A1: Correct	simultaneous equations to find values for <i>a</i> or <i>b</i> following an attempt at $1(-3+$ = 0. Allow this mark for seeing a value for <i>a</i> or <i>b</i> following simultaneous equati k.	41) = 0 or on, you do	not		
(h)					
B1: Correctl	y plotting $-3+4i$, $-3-4i$				
B1: Correctl	B1: Correctly plotting – 7				
(c)					

B1ft: -5+4i, -5-4i and subtracts 2 from their real root shown on their Argand diagram

Question	Scheme	Marks	AOs
3 (a)	Rotation	B1	1.1b
	30 degrees or $\frac{\pi}{6}$ about the <i>x</i> – axis Ignore any reference to direction	B1	1.1b
		(2)	
(b)	They have found AB when they should find BA Multiplication is the wrong way round It should be BA Matrix B should be on the left instead of the right Student has done transformation B followed by transformation A It should be $\begin{pmatrix} 1 & 3 & 0 \\ \sqrt{3} & 0 & 5\sqrt{3} \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$	B1	2.3
		(1)	
(c)	$\begin{cases} \begin{pmatrix} 1 & 3 & 0 \\ \sqrt{3} & 0 & 5\sqrt{3} \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{cases} \begin{pmatrix} 1 & \frac{3\sqrt{3}}{2} & -\frac{3}{2} \\ \sqrt{3} & \frac{5\sqrt{3}}{2} & \frac{15}{2} \\ 1 & \sqrt{3} & -1 \end{pmatrix} \\ \\ \begin{cases} \begin{pmatrix} 1 & 3 & 0 \\ \sqrt{3} & 0 & 5\sqrt{3} \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \end{cases} \begin{cases} \begin{pmatrix} 1 & \frac{3\sqrt{3}}{2} & -1.5 \\ \sqrt{3} & \frac{5\sqrt{3}}{2} & -1.5 \\ \sqrt{3} & \frac{5\sqrt{3}}{2} & 7.5 \\ 1 & \sqrt{3} & -1 \end{pmatrix} \end{cases}$	B1	1.1b
		(1)	
		(4 1	narks)
Notes:			
 (a) B1: Identifies the single transformation as a rotation only B1: Correct angle and axis. Ignore any reference to direction. Note <i>x</i>-plane, <i>zy</i>-plane and <i>x</i> = 0 are 2nd B0 Any additional incorrect statements is 2nd B0 			

(b) B1: Explains that they should be multiplied the other way around (c) B1: Correct exact matrix Note: $5\sqrt{3} \times \frac{\sqrt{3}}{2}$ must be simplified to $\frac{15}{2}$ Condone $\frac{2\sqrt{3}}{2}$ not simplified

Question		Scheme	Marks	AOs
4(i) (a)	$\frac{2+3i}{5+i} \times \frac{5-i}{5-i}$	2+3i = k(1+i)(5+i) =	M1	1.1a
	$\frac{10 - 2i + 15i + 3}{25 + 1} \text{ or } \frac{13 + 13i}{26}$	2+3i = k(5+i+5i-1) =	dM1	1.1b
	$\frac{1}{2}(1+i)$ cso	$2+3i = k(4+6i) \text{ therefore}$ $\frac{2+3i}{5+i} = k(1+i) \text{ where } k = \frac{1}{2} \text{ cso}$	A1	2.1
			(3)	
(i)(b)	<i>n</i> = 4		B1	2.2a
			(1)	
(ii)	z =3		B1	1.2
	$\arg(z^{10}) = 10 \arg(z) = -\frac{5\pi}{3} \Longrightarrow$ $\arg(z^{10}) = 10 \arg(z) = \frac{\pi}{3} \Longrightarrow \arg(z^{10}) = 10 \arg(z) = 10 \arg($	$\arg(z) = \dots \left\{ -\frac{\pi}{6} \right\}$ $g(z) = \dots \left\{ \frac{\pi}{30} \right\}$	M1	1.1b
	$z = 3\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$	=	M1	2.1
	$z = \frac{3\sqrt{3}}{2} - \frac{3}{2}i$ or $a = \frac{3\sqrt{3}}{2}$ and	$d b = -\frac{3}{2}$	A1	1.1b
			(4)	
	$A^{2} + b^{2} = 9$	lternative	B1	1.2
	10 arg $z = -\frac{5\pi}{3} \Rightarrow \arg z = -$ Or e.g 10 arg $(z) = \frac{\pi}{3} \Rightarrow \arg(z)$	$-\frac{5\pi}{3} \div 10$ $= \dots \left\{ \frac{\pi}{30} \right\}$	M1	1.1b
	Forming and solving simultaneous $\frac{b}{a} = \arctan\left(-\frac{\pi}{6}\right) \Rightarrow \frac{b}{a} - \frac{\sqrt{3}}{3} \Rightarrow$ or $\frac{b}{a} = \arctan\frac{\pi}{30} \Rightarrow b = 0.104a$	s equations to find a value for <i>a</i> or <i>b</i> $b = -a \frac{\sqrt{3}}{3}$	M1	2.1
	$z = \frac{3\sqrt{3}}{2} - \frac{3}{2}i$ or $a = \frac{3\sqrt{3}}{2}$ and	$d b = -\frac{3}{2}$	A1	1.1b
			(4)	
			(8)	marks)

Notes: (i) (a) M1: Selects the process $\frac{2+3i}{5+i} \times \frac{5-i}{5-i}$ dM1: Evidence of multiplying out brackets A1: Achieves $\frac{1}{2}(1+i)$ or $\frac{13}{26}(1+i)$ with no errors cso, isw. Note: Correct answer from no working score no marks Note: Going from $\frac{13+13i}{26}$ and then stating $k = \frac{1}{2}$ is A0, they have not shown the form asked for Alternative M1: Multiplies across by (5+i) and expands the brackets dM1: Collects terms A1: Achieves 2+3i = k(4+6i) and draws the conclusion that therefore $\frac{2+3i}{5+i} = k(1+i)$ where $k = \frac{1}{2}$ (i) (b) **B1:** Deduces n = 4 only (ii) Note: Send to review any attempts where they are finding additional solutions such as arguments of z is $\frac{(6k-5)\pi}{20}$ For example correctly uses $\arg(z) = \frac{\pi}{30}$ **B1 (M1 on ePen):** |z| = 3 can be implied by $a^2 + b^2 = 9$ isw M1: Uses $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$ to find $\arg(z) = -\frac{5\pi}{2} \div 10$ or $\arg(z) = \frac{\pi}{2} \div 10$ M1: Uses $z = \text{their} |z| (\cos(\text{their arg}) + i\sin(\text{their arg}))$ to find the complex number z or values for a or b. As long as the modulus has changed. A1: Correct complex number or values for *a* and *b*. Alternative **B1:** $a^2 + b^2 = 9$ isw M1: Uses $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ to find $\arg(z) = -\frac{5\pi}{2} \div 10$ M1: Uses the argument of z find an equation in a and b. Then solve simultaneously to find a value for a or b. As long as $\sqrt{a^2+b^2} \neq 59049$ A1: Correct complex number or values for a and b. Note there are other correct answers $z_1 = \frac{3\sqrt{3}}{2} - \frac{3}{2}i$ $z_6 = -\frac{3\sqrt{3}}{2} + \frac{3}{2}i$ $z_7 = awrt - 2.98 + awrt - 0.314 i$ $z_2 =$ awrt 2.98 + awrt 0.314i $z_8 = awrt - 2.23 + awrt - 2.01 i$ $z_3 =$ awrt 2.23 + awrt 2.01 i $z_9 = awrt - 0.624 + awrt - 2.93 i$ $z_4 =$ awrt 0.624 + awrt 2.93 i $z_{10} =$ awrt 1.22 + awrt - 2.74 i $z_5 = awrt - 1.22 + awrt 2.74 i$

Question	Scheme	Marks	AOs		
5(a)	$\{V = \} \pi \int_0^2 \left[(2 - y)^{\frac{1}{2}} \right]^2 dy \text{ or } \{V = \} \pi \int_0^2 (2 - y) dy$	B1	3.3		
	Integrates to the form $\alpha y \pm \beta y^2$	M1	1.1b		
	Correct integration $2y - \frac{1}{2}y^2$	A1	1.1b		
	Uses their y limits correctly in a changed expression				
	$\pi \left[2y - \frac{1}{2}y^2 \right]_0^2 = \pi \left(2(2) - \frac{1}{2}(2^2) \right) - 0 = \dots \{ 2\pi \text{ or } 6.28 \dots \}$	M1	3.4		
	mass = 'their volume' \times 900	M1	3.1b		
	Mass = 5700 (kg) 2 s.f. cao	A1	2.2b		
		(6)			
(b)	eg The surface will not be smooth The pile will not follow the shape of the curve The pile will not be solid Equation of the curves may not be a suitable model Concrete is likely to be uneven/may have bumps The pile is unlikely to be symmetrical	B1	3.5b		
		(1)			
(c)	Makes a comparison about the difference between their mass and 5500 and draws a conclusion e.g. 200 difference which is a lot of concrete therefore not a good model e.g. the mass of 5700 is very close to 5500 kg and draws a conclusion about the model – e.g. therefore a good model e.g. Finds the percentage error and draw a conclusion about the model e.g. The masses are very close/significantly different and draws an appropriate conclusion Not sufficient to say 5700 > 5500 B0	B1ft	3.5a		
		(1)			
		(8)	marks)		
Notes:					
 (a) B1: Sets up the model to find a correct expression for the volume, including limits, dy may be implied. The limits may be seen later. M1: Integrates to the form αy±βy² A1: Correct integration M1: Substitutes their y limits the correct way round and subtracts, must be a changed expression M1: Multiplies their volume by 900 to find the mass 					
A1: 5700 ca	A1: 5700 cao				
Note incorrect upper limit of $\sqrt{2}$ leads to 5200kg Scores B0 M1 A1 M1 M1 A0					

Note: Finding the volume around the *x*-axis can score B0 M0 A0 M0 M1 A0 only **Note** If they use their calculator to find the value of the definite integration and achieve the correct answer the maximum they can score is B1M0A0M1M1A1

(b)

B1: See scheme, must be referring to the model and not the value of the density etc

(c)

B1ft: See scheme, follow through on their answer to (a). If using a calculation, it must be correct. Ignore any contradictory comments e.g. 3.6% out so it's fairly close so it's a good model but it's an overestimate which isn't good. You may need to use your own judgement but any sensible comment comparing their value to 5500 is acceptable.

Question	Scheme	Marks	AOs
6(a)	$ \begin{pmatrix} 3\\0\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\2\\-3 \end{pmatrix} = 3\{+0\} - 3 $	M1	1.1b
	= 0 therefore the lines are perpendicular .	A1	2.4
		(2)	
(b)	$\mathbf{r} \bullet \begin{pmatrix} 1\\2\\-3 \end{pmatrix} = \begin{pmatrix} -2\\2\\0 \end{pmatrix} \bullet \begin{pmatrix} 1\\2\\-3 \end{pmatrix} = \dots \{2\}$	M1	1.1b
	x+2y-3z=2 o.e.	A1	2.5
		(2)	
(c)	3+2(1)-3(1)=2 (therefore lies on the plane)	B1	1.1b
		(1)	
(d)	$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ or $\begin{pmatrix} p \\ q \\ r \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ leading to $q = 3 - 2\mu$ $r = 2 + 3\mu$	M1	3.1a
	$(p-3)^{2} + (q-1)^{2} + (r-1)^{2} = (2\sqrt{5})^{2}$ $((2+\mu)-3)^{2} + ((3+2\mu)-1)^{2} + ((2-3\mu)-1)^{2} = (2\sqrt{5})^{2}$ $(-1+\mu)^{2} + (2+2\mu)^{2} + (1-3\mu)^{2} = 20$ or $(p-3)^{2} + (q-1)^{2} + (r-1)^{2} = (2\sqrt{5})^{2}$ $((2-\mu)-3)^{2} + ((3-2\mu)-1)^{2} + ((2+3\mu)-1)^{2} = (2\sqrt{5})^{2}$ $(-1-\mu)^{2} + (2-2\mu)^{2} + (1+3\mu)^{2} = 20$	M1	3.1a
	$14\mu^2 - 14 = 0$ o.e	A1	1.1b
	Solves their quadratic $\{\mu = -1 \text{ or } \mu = 1\}$	M1	1.1b
	Uses $\mu = -1$ Using $\mu = 1$	ddM1	1.1b

	$2 \cdot (-1)$				
	$p = 2 + (-1) = \dots$ $p = 2 - (1) = \dots$				
	$q = 3 + 2(-1) = \dots$ or $q = 3 - 2(1) = \dots$				
	$r = 2 - 3(-1) = \dots$ $r = 2 + 3(1) = \dots$				
	(1, 1, 5) only	A1	3.2a		
		(6)			
	Alternative				
	$ AX = \sqrt{(3-2)^2 + (1-3)^2 + (1-2)^2} = \sqrt{6}$	M1	3.1a		
	Correctly uses Pythagoras to find the length of <i>XB</i>				
	$ XB = \sqrt{\left(2\sqrt{5}\right)^2 - 6} = \sqrt{14}$	M1	3.1a		
	Find the magnitude of the direction vector and compares to the length of <i>XB</i> to find a value for μ	M1	1.1b		
	$\mu = -1 \text{ or } \mu = 1$	A1	1.1b		
	Uses $\mu = -1$ Using $\mu = 1$				
	$p = 2 + (-1) = \dots$ $p = 2 - (1) = \dots$	115.61	1 11		
	$q = 3 + 2(-1) = \dots$ or $q = 3 - 2(1) = \dots$	aaMI	1.10		
	$r = 2 - 3(-1) = \dots$ $r = 2 + 3(1) = \dots$				
	(1, 1, 5) only	A1	3.2a		
		(6)			
		(11 ו	marks)		
Notes:					
(a) M1: Applies A1: Shows t	the dot product to the direction vectors. Minimum requirement is $3 - 3$ hat the dot product = 0 and concludes that the lines are perpendicular .				
(b)					
M1: Applies $\mathbf{r} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \dots$					
A1: Correct Cartesian equation $x + 2y - 3z = 2$ 0.e.					
Note: $\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} = 2$ is M1A0					
(c) B1: See sch	(c) B1: See scheme, no conclusion required				
(d)					
M1: Uses the point of intersection to find the coordinates of <i>B</i> as functions of a parameter					
M1: Uses the distance between the point <i>A</i> and the point <i>B</i> to form an equation for their parameter only.					
A1: Correct	A1: Correct simplified quadratic equation				

M1: Solves their quadratic equation to find a value for μ

ddM1: Dependent on the first two method marks. Uses any one of their values for their parameter to find the coordinates of B, it need not be the correct one.

A1: Correct coordinates for B, condone as a vector, if seen (3, 5, -1) must be disregarded

Alternative

M1: Finds the length *AX*

M1: Uses Pythagoras to find the length of *XB*

NOTE the change in order of the M1 and A1

M1: Find the length of the direction vector and compares to find a value for μ

A1: A correct values for μ

ddM1: Dependent on the first two method marks. Uses any one of their values for their parameter to find the coordinates of B, it need not be the correct one.

A1: Correct coordinates for B, condone as a vector, if seen (3, 5, -1) must be disregarded

	(6)	
$(w=)\frac{7}{2}+\frac{3\sqrt{3}}{2}i$	A1	2.1
Uses $x = y\sqrt{3} - 1$ or $x = \frac{\sqrt{3}}{3}y + 2$ with their value of y leading to a value for x	M1	1.1b
$y\sqrt{3} = y\frac{\sqrt{3}}{3} + 3 \Longrightarrow y = \dots$	M1	3.1a

Notes:

(i)

M1: Draws a **single** straight line through **both axes** with a negative gradient. Ignore any line joining (3, 0) and (0, -6)

A1: Draws a single straight line through both axes with a negative gradient which has a negative y intercept. Ignore any intercept marked on the axes. Ignore any line joining (3, 0) and (0, -6)

B1: Shades the area above their straight line (not a bounded region such as a triangle bounded by the axes and the line)

(ii)

M1: Finds the Cartesian equations for both loci by using the gradient as tan(argument) and correct coordinate. Must be an attempt at both equations but one correct equation scores this mark

A1: One equation correct, need not be simplified

A1: Both equations correct, need not be simplified

M1: Solve simultaneously to find either the real or imaginary component.

M1: Finds the other component to complete the process of finding *w*.

A1: Correct exact answer

Note: If leaves the answer as a coordinate this is A0. If defines w = a + bi and then states $a = \frac{7}{2}$ and

$$b = \frac{3\sqrt{3}}{2}$$
 this is A1

Alternative

M1: Use both arguments to form equations involving x and y

A1: (One correct triangle) value for x in terms of y

A1: (Two correct triangles), values for x in terms of y

M1: Forms and solves an equation $y\sqrt{3} = y\frac{\sqrt{3}}{3} + 3 \Rightarrow y = \dots$ must be come from $x_2 = x_{-1} + 3$

M1: Uses their y value and $x = y\sqrt{3} - 1$ or $x = \frac{\sqrt{3}}{3}y + 2$ to find a value for x

A1: Correct exact answer

Note: If candidates use decimal instead of exact values throughout allow the method marks y = 1.73x - 3.46 and y = 0.58x + 0.58

Alternative 4		
3 <i>AB</i>	M1	3.1a
$\frac{1}{\sin 30} = \frac{1}{\sin 120}$	A1	1.1b
$AB = 3\sqrt{3}$		
$\sin 30 = \frac{BC}{3\sqrt{3}} \qquad $	M1	1.1b
$BC = \frac{3}{2}\sqrt{3} \qquad \qquad AC = \frac{7}{2}$	A1	1.1b
Uses trigonometry to find the other component		1.1b
$\left(w=\right)\frac{7}{2}+\frac{3\sqrt{3}}{2}i$		2.1
	(6)	
Alternative 4		
M1: Uses the sine rule to find the length <i>AB</i>		
A1: Correct length AB		
M1: Uses trigonometry to find either the real or imaginary component		
A1: Correct real or imaginary component		
M1: Uses trigonometry to find the other component		
A1: Correct exact answer		

8(a)	$(2r-1)^{2} = 4r^{2} - 4r + 1$ $\sum_{r=1}^{n} (2r-1)^{2} = 4\sum_{r=1}^{n} r^{2} - 4\sum_{r=1}^{n} r + \sum_{r=1}^{n} 1$ $= 4\frac{n}{6}(n+1)(2n+1) - 4\frac{n}{2}(n+1) + n$ $= \frac{n}{6} [2(n+1)(2n+1) - 6(n+1) + 3]$	B1 M1 A1	1.1b 1.1b 1.1b
-	$\sum_{r=1}^{n} (2r-1)^{2} = 4 \sum_{r=1}^{n} r^{2} - 4 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1$ = $4 \frac{n}{6} (n+1) (2n+1) - 4 \frac{n}{2} (n+1) + n$ = $\frac{n}{6} [2(n+1)(2n+1) - 6(n+1) + 3]$	M1 A1	1.1b 1.1b
	$=\frac{n}{2}\left[2(n+1)(2n+1)-6(n+1)+3\right]$		1
	$\int_{3}^{2} (n+1)(2n+1) = 0(n+1) + 5 $ Or $= n \left[\frac{2}{3}(n+1)(2n+1) - 2(n+1) + 1 \right]$	dM1	1.1b
_	$\left\{\frac{n}{3}\left(4n^{2}+6n+2-6n-6+3\right)\right\}$ $=\frac{n}{3}\left(4n^{2}-1\right) \cos (1-2n) \sin (1-2n)$	A1	2.1
-		(5)	
(b)	$\sum_{r=51}^{500} (2r-1)^2$	B1	3.1a
-	$\sum_{r=51}^{500} (2r-1)^2 = \sum_{r=1}^{500} (2r-1)^2 - \sum_{r=1}^{50} (2r-1)^2$ $= \frac{500}{3} (4(500)^2 - 1) - \frac{50}{3} (4(50)^2 - 1)$ $\{ = 1666666500 - 166650 \}$	M1	1.1b
-	166 499 850	A1	1.1b
		(3)	
		(8 1	narks)
Notes:			
 (a) B1: Correct expanded expression. M1: Substitutes at least one of the standard formulae into their expanded expression. A1: Fully correct unsimplified expression. dM1: Dependent on previous method. Attempts to factorises out <i>n</i>. Must have a <i>n</i> in every term. Condone a slin with one term as long as the intention is clear. 			

A1: Achieves the correct answer, with a correct intermediate line of working. cso

Note If uses $\sum l = l$ scores B1 M1 A0 M0 A0

An attempt at proof by induction may score B1 only

(b)

B1: Correct summation formula for the sum of the squares of all positive odd three-digit integers including limits. This can be implied by later work.

M1: Uses the answer to part (a) and
$$\sum_{r=p}^{q} (2r-1)^2 = \sum_{r=1}^{q} (2r-1)^2 - \sum_{r=1}^{p-1} (2r-1)^2$$
 where *p*, *q* are numerical and $q > p$, to find a value. There must be some indication of the sum that they are finding or the correct values for *p* and *q*.
States $\sum_{r=1}^{500} (2r-1)^2 - \sum_{r=1}^{50} (2r-1)^2$ implies B1
States $\frac{500}{3} (4(500)^2 - 1) - \frac{50}{3} (4(50)^2 - 1)$ this scores B1 (implied) and M1
A1: Correct value
Note $\sum_{r=51}^{500} (2r-1)^2 = 166499850$ or correct answer only scores B1 M0 A0, must be evidence of using the answer to (a)

Question	Scheme	Marks	AOs
9(i)	$\begin{vmatrix} k & -2 & 7 \\ -3 & -5 & 2 \\ k & k & 4 \end{vmatrix} = k(-20-2k) + 2(-12-2k) + 7(-3k+5k)$ or $\begin{vmatrix} k & -2 & 7 & k & -2 \\ -3 & -5 & 2 & -3 & -5 \\ k & k & 4 & k & k \end{vmatrix} = k(-5)(4) - 2(2)(k) + 7(-3)(k)$ -7(-5)(k) - k(2)(k) - (-2)(-3)(4)	M1	1.1b
	$-2k^2 - 10k - 24 (= 0)$ isw	A1	1.2
	$b^{2} - 4ac = (10)^{2} - 4(-2)(-24) =$ $b^{2} - 4ac = (5)^{2} - 4(-1)(-12) =$ Or $k^{2} + 5k + 12 = 0 \Rightarrow (k + 2.5)^{2} + 5.75 = 0 \Rightarrow (k + 2.5)^{2} = -5.75$ $-2k^{2} - 10k - 25 = 0 \Rightarrow -2(k + 2.5)^{2} - 12.5 = 0 \Rightarrow (k + 2.5)^{2} = -5.75$ Or $k^{2} + 5k + 12 \Rightarrow (k + 2.5)^{2} + 5.75 \Rightarrow (k + 2.5)^{2} \ge 0$ or $-2k^{2} - 10k - 25 = 0 \Rightarrow -2(k + 2.5)^{2} - 12.5 = 0 \Rightarrow -2(k + 2.5)^{2} \le 0$ Or $\frac{d(-2k^{2} - 10k - 24)}{dk} = -4k - 10 = 0 \Rightarrow k = -2.5 \Rightarrow \text{determinant} = -5.75$ Or $k = \frac{10 \pm \sqrt{(-10)^{2} - 4(-2)(-25)}}{2(-2)} = \frac{-5 \pm \sqrt{23i}}{2}$	M1	1.1b
	$b^2 - 4ac = -92 < 0$ therefore no real roots so non-singular $b^2 - 4ac = -23 < 0$ therefore no real roots so non-singular Or Square of negative is not real therefore non-singular Or $(k+2.5)^2 + 5.75 > 0$ therefore no real roots so non-singular $-2(k+2.5)^2 - 12.5 < 0$ therefore no real roots so non-singular Or As negative quadratic maximum value of determinant = -5.25 therefore no real roots so non-singular Or Imaginary roots therefore no real roots so non-singular	A1	2.4
		(4)	

(ii)	$\begin{pmatrix} 2 & -1 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} a & 4 \\ 2 & -a \end{pmatrix} = \begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}$ can be done separately for each point	M1	3.1a
	$ \begin{pmatrix} 2a-2 & 8+a \\ -3a & -12 \end{pmatrix} \text{ or } (2a-2, -3a) \text{ and } (8+a, -12) $	A1	1.1b
	$\sqrt{\left[\left(2a-2\right)-\left(8+a\right)\right]^{2}+\left[-3a-\left(-12\right)\right]^{2}} = \sqrt{58}$ or $\overline{AB} = \binom{8+a}{-12} - \binom{2a-2}{-3a} = \binom{10-a}{-12+3a}$ or $\overline{BA} = \binom{2a-2}{-3a} - \binom{8+a}{-12} = \binom{a-10}{12-3a}$ $(a-10)^{2} + (12-3a)^{2} = 58$ or $(10-a)^{2} + (3a-12)^{2} = 58$ leading to a 3TQ	M1	3.1a
	$10a^2 - 92a + 186 = 0$	A1	1.1b
	$a = 3, \frac{31}{5}$ o.e. cso	A1	1.1b
		(5)	
		(0)	1 \

(9 marks)

Notes:

(i)

M1: Correct method to find the determinant, condone a single sign slip but not on second term must be +2 (...)

Note: May expand along any row or column.

A1: Correct simplified determinant

M1: Either

- Finds the value of the discriminant or sufficient working seen to identify the sign e.g. 100 192
- Completes the square an rearranges so that $(k \pm a)^2 = -b$
- Completes the square and states that $(k \pm a)^2 \ge 0$
- Completes the square and states that $-\alpha (k \pm a)^2 \leq 0$
- Differentiates the determinant to find the coordinates of the vertex
- Use the quadratic formula to find the imaginary roots

A1: Correct solution only

Either

- Correct value for the discriminant (may be implied), concludes less than 0, therefore no real roots and non singular.
- Correct completing the square and conclude no real roots as square root of negative therefore non singular
- Correct completing the square and shows > 0 therefore no real roots and non singular.
- Correct completing the square and shows < 0 therefore no real roots and non singular.

- Correct coordinates of the vertex and negative quadratic therefore no real roots and non singular.
- Use the quadratics formula to find the correct imaginary roots therefore no real roots/value for *k* and non singular.

Note $k = \frac{-5 \pm \sqrt{23}i}{2}$ which is not real is M0 A0 unless uses the quadratic formula or completing the square to show where this has come from

(ii)

M1: Uses matrix Q to find the coordinates of the points A' and B'. Condone a sign slip.

A1: Correct coordinates for the points A' and B', they do not need to be labelled

M1: Finds the distance between their points A' and B' which must not be equal to A and B, sets equal to $\sqrt{58}$, forms a 3TQ.

A1: Correct 3TQ form correct coordinates

A1: Correct values cso

Misread: A common misread is 3 instead of -3, the first 3 mark only can be scored using the misread rule

$$\mathbf{M1:} \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} a & 4 \\ 2 & -a \end{pmatrix} = \begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}$$
$$\mathbf{A1:} \begin{pmatrix} 2a-2 & 8+a \\ 3a & 12 \end{pmatrix} \text{ or } (2a-2, 3a) \text{ and } (8+a, 12)$$
$$\mathbf{M1:} \sqrt{\left[(2a-2)-(8+a)\right]^2 + \left[3a-12\right]^2} = \sqrt{58}$$

A0, A0 This does lead to the correct answer but can score the first three marks only.

Question	Scheme	Marks	AOs
10(i)	$w = 3z - 1 \Rightarrow z = \frac{w + 1}{3}$	B1	3.1a
	$\left(\frac{w+1}{3}\right)^4 + 5\left(\frac{w+1}{3}\right)^2 - 30 = 0$	M1	3.1a
	$\frac{1}{81}\left(w^{4} + 4w^{3} + 6w^{2} + 4w + 1\right) + \frac{5}{9}\left(w^{2} + 2w + 1\right) - 30 = 0$ leading to $w^{4} + aw^{3} + bw^{2} + cw + d \{= 0\}$	M1	1.1b
	$w^4 + 4w^3 + 51w^2 + 94w - 2384 = 0$	A1 A1	1.1b 1.1b
		(5)	
	Alternative p+q+r+s=0, $pq+pr+ps+qr+qs+rs=5pqr+pqs+prs+qrs=0$, $pqrs=-30$	B1	3.1a
	New sum = $3(p+q+r+s)-4 =\{-4\}$ New pair sum = $9(pq+pr+ps+qr+qs+rs)-9(p+q+r+s)+6 =\{51\}$ New triple sum = $27(pqr+pqs+prs+qrs)-18(pq+pr+ps+qr+qs+rs)$ + $6(p+q+r+s)-4 =\{-94\}$ = $81(pqrs)-27(pqr+pqs+prs+qrs)$ New product + $9(pq+pr+ps+qr+qs+rs)-3(p+q+r+s)+1$ = $\{-2384\}$	M1	3.1a
	Applies $w^4 - (\text{new sum})w^3 + (\text{new pair sum})w^2 - (\text{new triple sum})w + (\text{new product}) = 0$	M1	1.1b
	$w^4 + 4w^3 + 51w^2 + 94w - 2384 = 0$	A1 A1	1.1b 1.1b
		(5)	
(ii) (a)	$\alpha + 2\alpha + \alpha - \beta = 0$ and $\alpha \times 2\alpha \times (\alpha - \beta) = -\frac{81}{4}$	M1 A1	3.1a 1.1b
	Solves simultaneously		
	e.g. $4\alpha - \beta = 0 \Rightarrow \beta = 4\alpha$ $2\alpha^2 (\alpha - 4\alpha) = -\frac{81}{4} \Rightarrow \alpha^3 = \frac{27}{8} \Rightarrow \alpha = \dots$	M1	3.1a
	Uses their values $\alpha = \frac{3}{2}\beta = 6$ to find the roots α , 2α , $\alpha - \beta$	M1	1.1b
	Roots 1.5, 3, – 4.5	A1	1.1b

(i) (b)
$$n = [(1.5 \times 3) + (1.5 \times -4.5) + (3 \times -4.5)] \times 4$$

Or
Multiplies out $(x-3)(x-\frac{3}{2})(x+\frac{9}{2})$ or $(x-3)(2x-3)(2x+9)$ to
achieve the form $4x^3 + ...$ (II) $n = -63 \cos (must have correct roots in (a)$ $A1$ $1.1b$ $n = -63 \cos (must have correct roots in (a)$ $A1$ $1.1b$ (2) (2) (2) (12 marks)Notes:(0)B1: Selects the method of making a connection between z and w by writing $z = \frac{w+1}{3}$. Other variables may be usedMI: Applies the process of substituting their $z = \frac{w+1}{2}$ into $z^4 + 5z^2 - 30 = 0$ MI: Manipulates their equation into the form $w^4 + aw^3 + bw^2 + cw + d = 0$ having substituted their z in terms of w . Note that the "= 0" can be missing for this mark.A1: At least two of a, b, c, d correct. Note that the "= 0" can be missing for this mark.MI: Applies the process of finding at least three of the new sum, new triple sum and new product. Condone slips but the intention is clear and uses their values.MI: Applies the process of finding at least three of the new sum, new triple sum and new product. Condone slips but the intention is clear and uses their values.MI: Applies w" - (new sum) $w^3 + (new pair sum) w^2 - (new triple sum) w + (new product) = 0.Condone slips but the insting for this mark.A1: Fully correct equation including "= 0" Must be in terms of w(i) AlternativeMI: Applies $w^4 - (aw sum)w^3 + (new pair sum)w^2 - (new triple sum)w + (new product) = 0.Condone slips but this mark.$$

